मान लीजिए $O=(0,0) ; x$ - एवं $y$-अक्ष पर दो बिंदु क्रमशः $A$ and $B$ ऐसे हैं कि $\angle O B A=60^{\circ}$ है. मान लीजिए कि बिंदु $D$ पहले चतुर्थाश $(quadrant)$ में इस प्रकार है कि $O A D$ एक समबाहु त्रिभुज है. $D B$ की प्रबणता क्या होगी ?

  • [KVPY 2016]
  • A

    $\sqrt{3}$

  • B

    $\sqrt{2}$

  • C

    $\frac{1}{\sqrt{2}}$

  • D

    $\frac{1}{\sqrt{3}}$

Similar Questions

माना एक त्रिभुज, रेखाओं $L _1: 2 x +5 y =10$; $L _2:-4 x +3 y =12$ द्वारा परिबद्ध है तथा रेखा $L _3$ जो बिन्दु $P (2,3)$ से गुजरती है रेखा $L _2$ को $A$ पर तथा रेखा $L _1$ को $B$ पर काटती है। यदि बिन्दु $P$, रेखाखण्ड $AB$ को आंतरिक रूप से $1: 3$ के अनुपात में विभाजित करता है, तो त्रिभुज का क्षेत्रफल के बराबर है

  • [JEE MAIN 2022]

माना एक सांद्रिभुज त्रिगुण $ABC$ में $A$ बिंदु $(-1,0),$ $\angle \mathrm{A}=\frac{2 \pi}{3}, \mathrm{AB}=\mathrm{AC}$ है तथा $\mathrm{B}$, धनात्मक $\mathrm{x}$-अक्ष पर है। यदि $\mathrm{BC}=4 \sqrt{3}$ तथा रेखा $\mathrm{BC}$, रेखा $\mathrm{y}=\mathrm{x}+3$ को $(\alpha, \beta)$ पर काटती है, तो $\frac{\beta^4}{\alpha^2}$ बराबर है :

  • [JEE MAIN 2024]

माना एक समांतर चतुर्भुज की दो संलग्न भुजाओं के समीकरण $2 x-3 y=-23$ तथा $5 x+4 y=23$ हैं। यदि इसके एक विकर्ण $\mathrm{AC}$ का समीकरण $3 x+7 y=23$ है तथा $A$ की दूसरे विकर्ण से दूरी $d$ है, तो $50 \mathrm{~d}^2$ बराबर है:

  • [JEE MAIN 2023]

मूलबिन्दु से खींची गयी सरल रेखायुग्म एक अन्य रेखा $2x + 3y = 6$ के साथ समद्विबाहु समकोण त्रिभुज बनाती है, तो सरल रेखाओं के समीकरण एवं इस प्रकार प्राप्त त्रिभुज का क्षेत्रफल होगा

वक्र $|x| + |y|\, = 1$ से परिबद्ध क्षेत्र का क्षेत्रफल है

  • [IIT 1981]