मान लीजिए $O=(0,0) ; x$ - एवं $y$-अक्ष पर दो बिंदु क्रमशः $A$ and $B$ ऐसे हैं कि $\angle O B A=60^{\circ}$ है. मान लीजिए कि बिंदु $D$ पहले चतुर्थाश $(quadrant)$ में इस प्रकार है कि $O A D$ एक समबाहु त्रिभुज है. $D B$ की प्रबणता क्या होगी ?
$\sqrt{3}$
$\sqrt{2}$
$\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{3}}$
माना एक त्रिभुज, रेखाओं $L _1: 2 x +5 y =10$; $L _2:-4 x +3 y =12$ द्वारा परिबद्ध है तथा रेखा $L _3$ जो बिन्दु $P (2,3)$ से गुजरती है रेखा $L _2$ को $A$ पर तथा रेखा $L _1$ को $B$ पर काटती है। यदि बिन्दु $P$, रेखाखण्ड $AB$ को आंतरिक रूप से $1: 3$ के अनुपात में विभाजित करता है, तो त्रिभुज का क्षेत्रफल के बराबर है
माना एक सांद्रिभुज त्रिगुण $ABC$ में $A$ बिंदु $(-1,0),$ $\angle \mathrm{A}=\frac{2 \pi}{3}, \mathrm{AB}=\mathrm{AC}$ है तथा $\mathrm{B}$, धनात्मक $\mathrm{x}$-अक्ष पर है। यदि $\mathrm{BC}=4 \sqrt{3}$ तथा रेखा $\mathrm{BC}$, रेखा $\mathrm{y}=\mathrm{x}+3$ को $(\alpha, \beta)$ पर काटती है, तो $\frac{\beta^4}{\alpha^2}$ बराबर है :
माना एक समांतर चतुर्भुज की दो संलग्न भुजाओं के समीकरण $2 x-3 y=-23$ तथा $5 x+4 y=23$ हैं। यदि इसके एक विकर्ण $\mathrm{AC}$ का समीकरण $3 x+7 y=23$ है तथा $A$ की दूसरे विकर्ण से दूरी $d$ है, तो $50 \mathrm{~d}^2$ बराबर है:
मूलबिन्दु से खींची गयी सरल रेखायुग्म एक अन्य रेखा $2x + 3y = 6$ के साथ समद्विबाहु समकोण त्रिभुज बनाती है, तो सरल रेखाओं के समीकरण एवं इस प्रकार प्राप्त त्रिभुज का क्षेत्रफल होगा
वक्र $|x| + |y|\, = 1$ से परिबद्ध क्षेत्र का क्षेत्रफल है