The triangle formed by ${x^2} - 9{y^2} = 0$ and $x = 4$ is
Isosceles
Equilateral
Right angled
None of these
Two sides of a parallelogram are along the lines, $x + y = 3$ and $x -y + 3 = 0$. If its diagonals intersect at $(2, 4)$, then one of its vertex is
The diagonals of a parallelogram $PQRS$ are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then $PQRS$ must be a
Show that the area of the triangle formed by the lines
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$.
In a triangle $ABC$, coordianates of $A$ are $(1, 2)$ and the equations of the medians through $B$ and $C$ are $x + y = 5$ and $x = 4$ respectively. Then area of $\Delta ABC$ (in sq. units) is
If one vertex of an equilateral triangle of side $'a'$ lies at the origin and the other lies on the line $x - \sqrt{3} y = 0$ then the co-ordinates of the third vertex are :