Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Let $A$ and $B$ be any two $n \times n$ matrices such that the following conditions hold: $A B=B A$ and there exist positive integers $k$ and $l$ such that $A^k=I$ ( the identity matrix) and $B^l=0$ (the zero matrix). Then,

A

$A+B=I$

B

$\operatorname{det}(A B)=0$

C

$\operatorname{det}(A+B) \neq 0$

D

$(A+B)^m=0$ for some integer $m$

(KVPY-2011)

Solution

(b)

We have, $A B=B A$

$A^k=I, B^l =0$

$\left|A^k\right|=1,\left|B^l\right| =0$

$|B| =0$

$\operatorname{det}(A B)=|A||B|=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.