- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $A$ and $B$ be any two $n \times n$ matrices such that the following conditions hold: $A B=B A$ and there exist positive integers $k$ and $l$ such that $A^k=I$ ( the identity matrix) and $B^l=0$ (the zero matrix). Then,
A
$A+B=I$
B
$\operatorname{det}(A B)=0$
C
$\operatorname{det}(A+B) \neq 0$
D
$(A+B)^m=0$ for some integer $m$
(KVPY-2011)
Solution
(b)
We have, $A B=B A$
$A^k=I, B^l =0$
$\left|A^k\right|=1,\left|B^l\right| =0$
$|B| =0$
$\operatorname{det}(A B)=|A||B|=0$
Standard 12
Mathematics