Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is
$3$
$2$
$1$
$0$
If $f$ is a differentiable function such that $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ then minimum number of roots of the equation $f'(x) = 0$ in $x \in \left( { - 5,10} \right)$ ,given that $f(2) = f(5) = f(10)$ , is
For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$, the correct statement$(s)$ is (are) :
$(A)$ $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$
$(B)$ $(f(c))^2+f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$
$(C)$ $(f(c))^2+3 f(c)=(g(c))^2+g(c)$ for some $c \in[0,1]$
$(D)$ $(f(c))^2=(g(c))^2$ for some $c \in[0,1]$
Let $f$ and $g$ be real valued functions defined on interval $(-1,1)$ such that $g^{\prime \prime}(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0, g^{\prime \prime}(0) \neq$ 0 , and $f(x)=g(x) \sin x$.
$STATEMENT$ $-1: \lim _{x \rightarrow 0}[g(x) \cot x-g(0) \operatorname{cosec} x]=f^{\prime \prime}(0)$.and
$STATEMENT$ $-2: f^{\prime}(0)=g(0)$.
Consider $f (x) = | 1 - x | \,;\,1 \le x \le 2 $ and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$ then which of the following is correct ?
If $f:R \to R$ and $f(x)$ is a polynomial function of degree ten with $f(x)=0$ has all real and distinct roots. Then the equation ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ has