5. Continuity and Differentiation
hard

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a thrice differentiable function such that $f(0)=0, f(1)=1, f(2)=-1, f(3)=2$ and $f(4)=-2$. Then, the minimum number of zeros of $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$ is....................

A

$8$

B

$4$

C

$5$

D

$9$

(JEE MAIN-2024)

Solution

$ \left(3 f^{\prime} f^{\prime \prime}+f f f^{\prime \prime \prime}\right)(x)=\left(\left(f f^{\prime \prime}+\left(f^{\prime}\right)^2\right)(x)\right)^{\prime} $

$ \left(\mathrm{ff}^{\prime \prime}+\left(\mathrm{f}^{\prime}\right)^2\right)(\mathrm{x})=\left(\left(\mathrm{ff}^{\prime}\right)(\mathrm{x})\right)^{\prime} $

$ \therefore\left(3 \mathrm{f}^{\prime} \mathrm{f}^{\prime \prime}+\mathrm{f}^{\prime \prime \prime}\right)(\mathrm{x})=\left(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}^{\prime}(\mathrm{x})\right)^{\prime \prime} $

$Image$

$ \min \text {. roots of } \mathrm{f}(\mathrm{x}) \rightarrow 4 $

$ \therefore \min \text {. roots of } \mathrm{f}^{\prime}(\mathrm{x}) \rightarrow 3 $

$ \therefore \min \text {. roots of }\left(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}^{\prime}(\mathrm{x})\right) \rightarrow 7 $

$ \therefore \min \text {. roots of }\left(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}^{\prime}(\mathrm{x})\right)^{\prime \prime} \rightarrow 5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.