- Home
- Standard 11
- Mathematics
Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is
$p_1(3)+p_2(1)+4028=0$
$p_1(3)+p_2(1)+4026=0$
$p_1(2)+p_2(1)+4028=0$
$p_1(1)+p_2(2)+4028=0$
Solution
(a)
Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$
$=(x-\alpha)(x-\beta)(x-\gamma)$
and $\quad p_2(x)=x^3-2021 x^2+b_2 x+c_2$
$=(x-\alpha)(x-\beta)(x-\delta)$
Since, $p_1(x) \cdot q_1(x)+p_2(x) \cdot q_2(x)$
$=x^2-3 x+2$
On comparing the coefficient of $x^3$, we get $q_1(x)=-q_2(x)=q(x)($ say $)$
So, $(x-\alpha)(x-\beta)[q(x)(\delta-\gamma)]$ $=(x-1)(x-2)$
$\therefore \quad \alpha=1, \beta=2, \gamma=2017$ and $\delta=2018$
$p_1(x)=(x-1)(x-2)(x-2017)$
$\Rightarrow \quad p_1(3)=-4028$
$p_2(x)=(x-1)(x-2)(x-2018)$
$p_2(1)=0$
So,$\quad p_1(3)+p_2(1)+4028=0$