If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then

  • [IIT 1987]
  • A

    $ - 2 > x > - 1$

  • B

    $ - 2 \ge x \ge - 1$

  • C

    $ - 2 < x < - 1$

  • D

    $ - 2 < x \le - 1$

Similar Questions

The sum of the roots of the equation, ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ is

  • [JEE MAIN 2014]

Let $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$

If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to:

  • [JEE MAIN 2021]

If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:

  • [JEE MAIN 2017]

The product of the roots of the equation $9 x^{2}-18|x|+5=0,$ is

  • [JEE MAIN 2020]

The number of distinct real roots of the equation $x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$ is

  • [JEE MAIN 2022]