Gujarati
4-2.Quadratic Equations and Inequations
hard

If $\alpha, \beta $ and $\gamma$ are the roots of equation ${x^3} - 3{x^2} + x + 5 = 0$ then $y = \sum {\alpha ^2} + \alpha \beta \gamma $ satisfies the equation

A

${y^3} + y + 2 = 0$

B

${y^3} - {y^2} - y - 2 = 0$

C

${y^3} + 3{y^2} - y - 3 = 0$

D

${y^3} + 4{y^2} + 5y + 20 = 0$

Solution

(b) Given equation ${x^3} – 3{x^2} + x + 5 = 0$.

Then $\alpha + \beta + \gamma = 3$, $\alpha \beta + \beta \gamma + \gamma \alpha = 1$, $\alpha \beta \gamma = – 5$

$y = \Sigma {\alpha ^2} + \alpha \beta \gamma = {(\alpha + \beta + \gamma )^2} – 2\,(\alpha \beta + \beta \gamma + \gamma \alpha ) + \alpha \beta \gamma $

= $9 – 2 – 5 = 2$

$\therefore $ $y = 2$

It satisfies the equation ${y^3} – {y^2} – y – 2 = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.