If $\alpha, \beta $ and $\gamma$ are the roots of equation ${x^3} - 3{x^2} + x + 5 = 0$ then $y = \sum {\alpha ^2} + \alpha \beta \gamma $ satisfies the equation
${y^3} + y + 2 = 0$
${y^3} - {y^2} - y - 2 = 0$
${y^3} + 3{y^2} - y - 3 = 0$
${y^3} + 4{y^2} + 5y + 20 = 0$
If $x$ is real, then the value of ${x^2} - 6x + 13$ will not be less than
If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to
Suppose that $x$ and $y$ are positive number with $xy = \frac{1}{9};\,x\left( {y + 1} \right) = \frac{7}{9};\,y\left( {x + 1} \right) = \frac{5}{{18}}$ . The value of $(x + 1) (y + 1)$ equals
The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are
If $a, b, c, d$ and $p$ are distinct real numbers such that $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2) \le 0$, then