Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]
  • A

    $\frac{1}{2}$

  • B

    $\frac{2}{3}$

  • C

    $\frac{5}{4}$

  • D

    $\frac{13}{7}$

Similar Questions

The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is

  • [KVPY 2015]

Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?

$I.$ $x^3+y^3+z^3=3 x y z$

$II.$ $x^3+y^2 z+y z^2=3 x y z$

$III.$ $x^3+y^2 z+z^2 x=3 x y z$

$IV.$ $(x+y+z)^3=27 x y z$

  • [KVPY 2015]

Below are four equations in $x$. Assume that $0 < r < 4$. Which of the following equations has the largest solution for $x$ ?

  • [KVPY 2011]

The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is

The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are