Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{5}{4}$
$\frac{13}{7}$
The number of distinct real roots of the equation $x ^{7}-7 x -2=0$ is
If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................
Let $[t]$ denote the greatest integer $\leq t .$ Then the equation in $x ,[ x ]^{2}+2[ x +2]-7=0$ has
The integer $'k'$, for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every $x$ in $R ,$ is