Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]
  • A

    $\frac{1}{2}$

  • B

    $\frac{2}{3}$

  • C

    $\frac{5}{4}$

  • D

    $\frac{13}{7}$

Similar Questions

If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when

  • [IIT 1984]

The set of all $a \in R$ for which the equation $x | x -1|+| x +2|+a=0$ has exactly one real root is:

  • [JEE MAIN 2023]

Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?

$I.$ $x^3+y^3+z^3=3 x y z$

$II.$ $x^3+y^2 z+y z^2=3 x y z$

$III.$ $x^3+y^2 z+z^2 x=3 x y z$

$IV.$ $(x+y+z)^3=27 x y z$

  • [KVPY 2015]

The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .

  • [JEE MAIN 2021]

The number of non-negative integer solutions of the equations $6 x+4 y+z=200$ and $x+y+z=100$ is

  • [KVPY 2019]