Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{5}{4}$
$\frac{13}{7}$
The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is
Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
Below are four equations in $x$. Assume that $0 < r < 4$. Which of the following equations has the largest solution for $x$ ?
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is
The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are