- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
A
$\frac{1}{2}$
B
$\frac{2}{3}$
C
$\frac{5}{4}$
D
$\frac{13}{7}$
(KVPY-2021)
Solution
(b)
$x ^6-6 x ^5+15 x ^4-20 x ^3+15 x ^2-6 x +1=0$ $( x -1)^6=0$
All roots are equal and are equal to 1 $\therefore a =1, b =1$
$\therefore \frac{a^2+b^2}{a+b+1}=\frac{2}{3}$
Standard 11
Mathematics