Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
$\frac{1}{2}$
$\frac{2}{3}$
$\frac{5}{4}$
$\frac{13}{7}$
If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when
The set of all $a \in R$ for which the equation $x | x -1|+| x +2|+a=0$ has exactly one real root is:
Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .
The number of non-negative integer solutions of the equations $6 x+4 y+z=200$ and $x+y+z=100$ is