1.Set Theory
hard

Let $S = \{ x \in R:x \ge 0$ and $2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0\} $ then $S:$ . . .

A

contains exactly one element.

B

contains exactly two elements

C

contains exactly four element.

D

is an empty set

(JEE MAIN-2018)

Solution

Case – $I$ : $x\,\in \,[0,\,9]$

$2(3 – \sqrt x )\, + \,x\, – \,6\sqrt x \, + \,6\, = \,0$

$ \Rightarrow \,x\, – \,8\sqrt x \, + \,12\, = \,0\, \Rightarrow \,\sqrt x \, = \,4,2\, \Rightarrow \,x\, = \,16,4$

Since $x\, \in \,[0,\,9]$

$\therefore \,\,x\,=\,4$

Case – $II$ : $x\, \in \,[9,\,\infty ]$

$2(\sqrt x  – 3)\, + \,x\, – \,6\sqrt x \, + \,6\, = \,0$

$ \Rightarrow \,x\, – \,4\sqrt x \,\, = \,0\, \Rightarrow \,x\, = \,16,0$

Since $x\, \in \,[9,\,\infty ]$

$\therefore \,\,x\,=\,16$

Hence , $x\,=\,4$ and $16$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.