निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा
$2$
$\sqrt{2}$
$1$
$\frac{1}{\sqrt{2}}$
यदि किसी गुणोत्तर श्रेणी का $4$ वाँ, $10$ वाँ तथा $16$ वाँ पद क्रमश: $x, y$ तथा $z$ हैं, तो सिद्ध कीजिए कि $x, y, z$ गुणोत्तर श्रेणी में हैं।
श्रेणी $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$ का अनन्त पदों तक योग है
यदि धनात्मक पदों की एक गुणोत्तर श्रेढ़ी के दूसरे, तीसरे तथा चौथे पदों का योगफल $3$ है तथा इसके छठे, सातवें और आठवें पदों का योगफल $243$ है, तो इस गुणोत्तर श्रेढ़ी के प्रथम $50$ पदों का योगफल है
अनुक्रम $3 + 33 + 333 + ....$ के $n$ पदों का योग होगा
एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है