एक $GP$ का चौथा पद $500$ है तथा इसका सार्व अनुपात $\frac{1}{\mathrm{~m}}, \mathrm{~m} \in \mathrm{N}$ है। माना इस $GP$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_6>\mathrm{S}_5+1$ तथा $\mathrm{S}_7<\mathrm{S}_6+\frac{1}{2}$ है, तो $\mathrm{m}$ के संभव मानों की संख्या है______________.
$11$
$10$
$12$
$15$
यदि गुणोत्तर श्रेणी $\left\{ {{a_n}} \right\}$ में,$\;{a_1} = 3,\;{a_n} = 96$ व ${S_n} = 189$, तब $n$ का मान है
माना $a _{1}, a _{2}, \ldots \ldots, a _{10}$ एक गुणोत्तर श्रेढ़ी है। यदि $\frac{ a _{3}}{ a _{1}}=25$, तो $\frac{ a _{9}}{ a _{5}}$ बराबर है
यदि $x$ और $y$ के बीच गुणोत्तर माध्य $G$ है, तो $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}}$ का मान है
$n$ का मान ज्ञात कीजिए ताकि $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}, a$ तथा $b$ के बीच गुणोत्तर माध्य हो।
माना $n =1,2, \ldots ., 50$ के लिए, अनन्त गुणोत्तर श्रेणी का योगफल $S _{ n }$ है जिसका प्रथम पद $n ^2$ तथा जिसका सार्व अनुपात $\frac{1}{(n+1)^2}$ है। तब $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ का मान है