इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :
$2$
$0$
$-2$
$-4$
माना $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$, तब समुच्चय $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ है
फलन $f(x)=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$-\cos \left(\frac{3 \pi}{4}-x\right))$ का परिसर है
फलन ${\sin ^{ - 1}}\sqrt x $ निम्न अंतराल में परिभाषित है
संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
फलन $f(x) = \frac{{x + 2}}{{|x + 2|}}$ का परिसर (रेंज) है