- Home
- Standard 11
- Mathematics
Let $x$ and $y$ be two $2-$digit numbers such that $y$ is obtained by reversing the digits of $x$. Suppose they also satisfy $x^2-y^2=m^2$ for some positive integer $m$. The value of $x+y+m$ is
$88$
$112$
$144$
$154$
Solution
(d)
We have,
$x$ and $y$ be two-digit numbers.
Let $x=10 a+b$, where $b$ is units place and $a$ is ten's place.
$\because y=10 b +a$
$x^2-y^2 =m^2$
$\because (10 a+b)^2-(10 b+a)^2 =m^2$
$\Rightarrow(10 a+b+10 b+a)$
$\Rightarrow \quad \begin{aligned}(10 a+b-10 b-a) &=m^2 \\ \Rightarrow \quad 11(a+b) \cdot 9(a-b) &=m^2 \end{aligned}$
$\begin{aligned} \Rightarrow & & 11(a+b) \cdot 9(a-b) &=m^2 \\ \Rightarrow & & 99\left(a^2-b^2\right) &=m^2 \end{aligned}$
$\Rightarrow \quad 3^2 \times 11\left(a^2-b^2\right)=m^2$
Now, $3^2 \times 11\left(a^2-b^2\right)$ is a perfect square.
$\because a^2-b^2=11 \Rightarrow(a+b)(a-b)=11 \times 1$
$a+b=11$ and $a-b=11$
On solving, we get $a=6, b=5$
$\because$ Number $x=60+5=65$
$y=56$
and $m^2=(65)^2-(56)^2=(65+56)(65-56)$
$\Rightarrow m^2=121 \times 9 \Rightarrow m=33$
$\because \quad x+y+m=65+56+33=154$