Let $x$ and $y$ be two $2-$digit numbers such that $y$ is obtained by reversing the digits of $x$. Suppose they also satisfy $x^2-y^2=m^2$ for some positive integer $m$. The value of $x+y+m$ is

  • [KVPY 2014]
  • A

    $88$

  • B

    $112$

  • C

    $144$

  • D

    $154$

Similar Questions

Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................

  • [JEE MAIN 2024]

The polynomial equation $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ has

  • [KVPY 2016]

If the roots of ${x^2} + x + a = 0$exceed $a$, then

Let $p$ and $q$ be two real numbers such that $p+q=$ 3 and $p^{4}+q^{4}=369$. Then $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}$ is equal to

  • [JEE MAIN 2022]

Let, $\alpha, \beta$ be the distinct roots of the equation $\mathrm{x}^2-\left(\mathrm{t}^2-5 \mathrm{t}+6\right) \mathrm{x}+1=0, \mathrm{t} \in \mathrm{R}$ and $\mathrm{a}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$. Then the minimum value of $\frac{\mathrm{a}_{2023}+\mathrm{a}_{2025}}{\mathrm{a}_{2024}}$ is

  • [JEE MAIN 2024]