मान लें कि $x, y$ दो अंकों वाली प्राकृत संख्याएँ हैं। संख्या $x$ के अंकों को उत्क्रमित $(reverse)$ करने पर संख्या $y$ प्राप्त होती हैं। यदि प्राकृत संख्या $m$ इस प्रकार है कि $x^2-y^2=m^2$ तो $x+y+m$ का मान होगा:

  • [KVPY 2014]
  • A

    $88$

  • B

    $112$

  • C

    $144$

  • D

    $154$

Similar Questions

यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं 

  • [JEE MAIN 2019]

यदि $x$ वास्तविक है तथा $x + 2 > \sqrt {x + 4} $ को सन्तुष्ट करता है, तब

समीकरण $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$  का हल समुच्चय है

समीकरण $\mathrm{x}\left(\mathrm{x}^2+3|\mathrm{x}|+5|\mathrm{x}-1|+6|\mathrm{x}-2|\right)=0$ के वास्तविक हलों की संख्या है ...........

  • [JEE MAIN 2024]

समीकरण $\mathrm{e}^{4 \mathrm{x}}+8 \mathrm{e}^{3 \mathrm{x}}+13 \mathrm{e}^{2 \mathrm{x}}-8 \mathrm{e}^{\mathrm{x}}+1=0, \mathrm{x} \in \mathbb{R}:$

  • [JEE MAIN 2023]