Gujarati
4-2.Quadratic Equations and Inequations
normal

Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,

A

there is no solution pair $(a, b)$

B

there are infinitely many solution pairs $(a, b)$

C

there are exactly two solution pairs $(a, b)$

D

there is exactly one solution pair $(a, b)$

(KVPY-2016)

Solution

(d)

Given,

$(1+a+b)^2=3\left(1+a^2+b^2\right)$

$1+a^2+b^2+2 a+2 b+2 a b$

$=3+3 a^2+3 b^2$

$\Rightarrow 2 a^2+2 b^2-2 a-2 b-2 a b+2=0$

$\Rightarrow \quad\left(a^2-2 a+1\right)+\left(b^2-2 b+1\right)$

$+\left(a^2+b^2-2 a b\right)=0$

$\Rightarrow \quad(a-1)^2+(b-1)^2+(a-b)^2=0$

$\therefore \quad a-1=0, \quad b-1=0, a-b=0$

$\Rightarrow \quad a=1, b=1, a=b$

$\therefore \quad a=b=1$

Exactly one pair.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.