Let $p(x)=x^2-5 x+a$ and $q(x)=x^2-3 x+b$, where $a$ and $b$ are positive integers. Suppose HCF $(p(x), q(x))=x-1$ and $k(x)=1 cm (p(x), q(x))$ If the coefficient of the highest degree term of $k(x)$ is 1 , then sum of the roots of $(x-1)+k(x)$ is
$4$
$5$
$6$
$7$
If $a, b, c, d$ are four distinct numbers chosen from the set $\{1,2,3, \ldots, 9\}$, then the minimum value of $\frac{a}{b}+\frac{c}{d}$ is
Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :
The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$ is
Let $a, b, c, d$ be numbers in the set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^3+a x+b$ and $y=2 x^3+c x+d$ have no point in common. The maximum possible value of $(a-c)^2+b-d$ is
The number of solutions for the equation ${x^2} - 5|x| + \,6 = 0$ is