If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then

  • A

    $\frac{1}{3} \le k \le 3$

  • B

    $k \ge 5$

  • C

    $k \le 0$

  • D

    None of these

Similar Questions

If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -

If graph of $y = ax^2 -bx + c$ is following, then sign of $a$, $b$, $c$ are

If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-

The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are

The sum of integral values of $a$ such that the equation $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ has a solution