- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
Let $a, b, c, d$ be real numbers such that $|a-b|=2$, $|b-c|=3,|c-d|=4$. Then, the sum of all possible values of $|a-d|$ is
A
$9$
B
$18$
C
$24$
D
$30$
(KVPY-2011)
Solution
(b)
Given, $|a-b|=2,|b-c|=3$ and $|c-d|=4$
$\therefore a-b=\pm 2, b-c=\pm 3$ and $c-d=\pm 4$
Possible value of $(a-d)$ are $\pm 9, \pm 5, \pm 3, \pm 1$.
$\therefore \quad|a-d|=9,5,3,1$
Sum of $|a-d|=9+5+3+1=18$
Standard 11
Mathematics