- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.
A
$21$
B
$\frac{169}{8}$
C
$19$
D
$\frac{155}{8}$
(JEE MAIN-2023)
Solution

$\beta \gamma=1$
$\alpha=-1$
$\text { Put } \alpha=-1$
$-1-b+c=0$
$c-b=1$
$\text { also }$
$\alpha \cdot \beta \cdot \gamma=-c$
$-1=-c \Rightarrow c=1$
$\therefore b=0$
$x^3+1=0$
$\alpha=-1, \beta=- w , \gamma=- w ^2$
$\therefore b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$
$0+2+3+6+8=19$
Standard 11
Mathematics