Trigonometrical Equations
hard

ધારોકે $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\} .$ તો $\sum_{\theta \in s} \sin ^2\left(\theta+\frac{\pi}{4}\right)=...........$.

A

$4$

B

$6$

C

$8$

D

$2$

(JEE MAIN-2023)

Solution

$\tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0$

$\tan (\pi \cos \theta)=-\tan (\pi \sin \theta)$

$\tan (\pi \cos \theta)=\tan (-\pi \sin \theta)$

$\pi \cos \theta=n \pi-\pi \sin \theta$

$\sin \theta+\cos \theta= n \text { where } n \in I$

possible values are $n =0,1$ and $-1$ because

$-\sqrt{2} \leq \sin \theta+\cos \theta \leq \sqrt{2}$

Now it gives $\theta \in\left\{0, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{3 \pi}{2}, \pi\right\}$

So $\sum_{\theta \in S} \sin ^2\left(\theta+\frac{\pi}{4}\right)=2(0)+4\left(\frac{1}{2}\right)=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.