माना $S=\{\theta \in[0,2 \pi)$ : $\tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$ है। तब $\sum_{\theta \in} \sin ^2\left(\theta+\frac{\pi}{4}\right)$ बराबर है__________. 

  • [JEE MAIN 2023]
  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $2$

Similar Questions

यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, तब $\sin \left( {\theta  + \frac{\pi }{4}} \right)$ का मान होगा  

समीकरणों $\tan \theta  =  - 1$ तथा  $\cos \theta  = \frac{1}{{\sqrt 2 }}$ को सन्तुष्ट करने वाला $\theta $ का सर्वव्यापक मान है

माना $P =\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ तथा $Q =\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ दो समुच्चय हैं, तो

  • [JEE MAIN 2016]

यदि $2{\tan ^2}\theta  = {\sec ^2}\theta ,$ तो $\theta $ का व्यापक मान है

यदि $r\,\sin \theta  = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta  \le 2\pi ,$ तब $\theta  = $