3 and 4 .Determinants and Matrices
hard

Let $A , B , C$ be $3 \times 3$ matrices such that $A$ is symmetric and $B$ and $C$ are skew-symmetric.Consider the statements

$(S1): A ^{13} B ^{26}- B ^{26} A ^{13}$ is symmetric

$(S2):A ^{26} C ^{13}- C ^{13} A ^{26}$ is symmetric

Then,

A

Only $S 2$ is true

B

Only $S 1$ is true

C

Both $S 1$ and $S 2$ are false

D

Both $S1$ and $S2$ are true

(JEE MAIN-2023)

Solution

Given, $A^T=A, B^T=-B, C^T=-C$

Let $M=A^{13} B^{26}-B^{26} A^{13}$

Then, $M^T=\left(A^{13} B^{26}-B^{26} A^{13}\right)^{ T }$

$=\left(A^{13} B^{26}\right)^T-\left(B^{26} A^{13}\right)^{ T }$

$=\left(B^{ T }\right)^{26}\left(A^{ T }\right)^{13}-\left(A^{ T }\right)^{13}\left( B ^{ T }\right)^{26}$

$= B ^{26} A ^{13}- A ^{13} B ^{26}=- M$

Hence, $M$ is skew symmetric

Let, $N = A ^{26} C ^{13}- C ^{13} A ^{26}$

then, $N^{ T }=\left( A ^{26} C ^{13}\right)^{ T }-\left( C ^{13} A ^{26}\right)^{ T }$ $=-(C)^{13}(A)^{26}+A^{26} C^{13}=N$

Hence, $N$ is symmetric.

$\therefore$ Only $S2$ is true.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.