3 and 4 .Determinants and Matrices
hard

माना $\alpha$ व $\beta$ वास्तविक संख्याएं है। एक $3 \times 3$ आव्यूह $A$ है लिए $A^2=3 A+\alpha I$ है। यदि $\mathrm{A}^4=21 \mathrm{~A}+\beta \mathrm{I}$, है तब

A

$\alpha=1$

B

$\alpha=4$

C

$\beta=8$

D

$\beta=-8$

(JEE MAIN-2023)

Solution

$A ^2=3 A +\alpha I$

$A ^3=3 A ^2+\alpha A$

$A ^3=3(3 A +\alpha I )+\alpha A$

$A ^3=9 A +\alpha A +3 \alpha I$

$A ^4=(9+\alpha) A ^2+3 \alpha A$

$=(9+\alpha)(3 A +\alpha I )+3 \alpha A$

$= A (27+6 \alpha)+\alpha(9+\alpha)$

$\Rightarrow 27+6 \alpha=21 \Rightarrow \alpha=-1$

$\Rightarrow \beta=\alpha(9+\alpha)=-8$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.