4-1.Complex numbers
hard

ધારો કે $\alpha=8-14 i, A=\left\{z \in C : \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ અને $B=[z \in C :|z+3 i|=4]$.તો $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)=............$

A

$14$

B

$13$

C

$12$

D

$11$

(JEE MAIN-2023)

Solution

$\alpha=8-14 i$

$z=x+i y$

$a z=(8 x+14 y)+i(-14 x+8 y)$

$z +\overline{ z }=2 x \quad z -\overline{ z }=2 iy$

Set A: $\frac{2 i(-14 x+8 y)}{i(4 x y-112)}=1$

$(x-4)(y+7)=0$

$x=4 \quad \text { or } \quad y=-7$

Set B: $x^2+(y+3)^2=16$

when $x=4 \quad y=-3$

when $y =-7 \quad x =0$

$\therefore A \cap B=\{4-3 i, 0-7 i\}$

So, $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)=4-(-3)+(0-(-7))=14$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.