Which of the following are correct for any two complex numbers ${z_1}$ and ${z_2}$

  • A

    $|{z_1}{z_2}|\, = \,|{z_1}||{z_2}|$

  • B

    $arg\,\,({z_1}{z_2}) = (arg\,{z_1})(arg\,{z_2})$

  • C

    $|{z_1} - {z_2}|\, \geqslant \,|{z_1}| - |{z_2}|$

  • D

    $(a)$ and $ (c)$  both

Similar Questions

Let ${z_1}$ be a complex number with $|{z_1}| = 1$ and ${z_2}$be any complex number, then $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $

If $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , the number of values of $z$ satisfying ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ is

Let $w$ $(Im\, w \neq 0)$ be a complex number. Then the set of all complex number $z$ satisfying the equation $w - \overline {w}z  = k\left( {1 - z} \right)$ , for some real number $k$, is

  • [JEE MAIN 2014]

If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:

  • [JEE MAIN 2024]

The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is