Let $[t]$ denotes the greatest integer $\leq t$. If the constant term in the expansion of $\left(3 x^2-\frac{1}{2 x^5}\right)^7$ is $\alpha$, then $[\alpha]$ is equal to $............$.
$1274$
$1275$
$1273$
$1272$
The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is
The ratio of the coefficient of the middle term in the expansion of $(1+x)^{20}$ and the sum of the coefficients of two middle terms in expansion of $(1+x)^{19}$ is $....$
If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$ is equal to $729$ , then possible value of $x$ is
Find the coefficient of $x^{5}$ in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.
Coefficient of $x^{11}$ in the expansion of $\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ is