7.Binomial Theorem
hard

ધારોકે $[t]$ એ મહત્તમ પૂર્ણાક $\leq t$ દર્શાવે છે.જો $\left(3 x^2-\frac{1}{2 x^5}\right)^7$ નાં વિસ્તરણમાં અયળ પદ $\alpha$ હોય, તો $[\alpha]=...........$

A

$1274$

B

$1275$

C

$1273$

D

$1272$

(JEE MAIN-2023)

Solution

$\left(3 x ^2-\frac{1}{2 x ^5}\right)^7$

$T _{ r +1}={ }^7 C _{ r }\left(3 x ^2\right)^{7- r }\left(-\frac{1}{2 x ^5}\right)^{ r }$

$14-2 r -5 r =14-7 r =0$

$\therefore r =2$

$\therefore T _3={ }^7 C _2 \cdot 3^5\left(-\frac{1}{2}\right)^2=\frac{21 \times 243}{4}=1275.75$

$\therefore[\alpha]=1275$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.