ધારોકે $[t]$ એ મહત્તમ પૂર્ણાક $\leq t$ દર્શાવે છે.જો $\left(3 x^2-\frac{1}{2 x^5}\right)^7$ નાં વિસ્તરણમાં અયળ પદ $\alpha$ હોય, તો $[\alpha]=...........$
$1274$
$1275$
$1273$
$1272$
ધારોકે $(1+2 x)^n$ ના દ્વિપદી વિસ્તરણમાં ત્રણ ક્રમિક પદોનાં સહગુણકો $2:5:8$ ના ગુણોત્તર માં છે. તો આ ત્રણ પદોની મધ્યમાં આવેલ પદનો સહગુણક $.........$ છે.
જો $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ ના વિસ્તરણના શરૂઆતથી પાંચમા પદ અને છેલ્લે થી પાંચમા પદનો ગુણોત્તર $\sqrt{6}: 1$ હોય, તો $n$ શોધો.
${\left[ {\frac{x}{2}\,\, - \,\,\frac{3}{{{x^2}}}} \right]^{10}}$ માં $x^4$ નો સહગુણક મેળવો
જો ${(1 + x)^{21}}$ ના વિસ્તરણમાં ${x^r}$ અને ${x^{r + 1}}$ ના સહગુણક સમાન હોય તો $ r$ મેળવો.
જો $\left(a x-\frac{1}{b x^2}\right)^{13}$ માં $x^7$ નો સહગુણક અને $\left(a x+\frac{1}{b x^2}\right)^{13}$ માં $x^{-5}$ નો સહગુણક સરખા હોય,તો $a^4 b^4=.........$