माना $\theta \in[-\pi, \pi]$ के सभी मानों, जिनके लिये रैखिक समीकरण निकाय
रैखिक समीकरण निकाय
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
का अतुच्छ हल है, का समुच्चय $\mathrm{S}$ है। तो $\frac{120}{\pi} \sum_{\theta \in s} \theta$ बराबर है
$40$
$10$
$20$
$30$
यदि $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ तथा $\alpha \ne \frac{1}{2},$ तो
समीकरण के निकाय ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ का हल होगा
$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ का अधिकतम मान है
$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ =
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$