$\alpha $ के किस मान के लिए समीकरणों $a + b - 2c = 0,$ $2a - 3b + c = 0$ और $a - 5b + 4c = \alpha $ का हल समुच्चय संगत है
$1$
$0$
$-1$
$2$
यदि $x,$ if $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0$ तो $x$ का मान होगा
समीकरण के निकाय ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ का हल होगा
$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$ का मान ज्ञात कीजिए।
यदि समीकरण $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$का एक मूल -$9 $ हो, तो अन्य दो मूल होंगे
$a$ का वह मान जिसके लिये समीकरण निकाय ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0$ का एक अशून्य हल है