3 and 4 .Determinants and Matrices
hard

Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to

A

$40$

B

$10$

C

$20$

D

$30$

(JEE MAIN-2023)

Solution

For non trivial solutions

$D =0$

$\left|\begin{array}{ccc}1 & 1 & \sqrt{3} \\-1 & \tan \theta & \sqrt{7} \\1 & 1 & \tan \theta\end{array}\right|=0$

$\tan ^2 \theta-(\sqrt{3}-1)-\sqrt{3}=0$

$\tan \theta=\sqrt{3},-1$

$\theta=\left\{\frac{\pi}{3}, \frac{-2 \pi}{3}, \frac{-\pi}{4}, \frac{3 \pi}{4}\right\}$

$\frac{120}{\pi}(\Sigma \theta)=\frac{120}{\pi} \times \frac{\pi}{6}=20$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.