- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to
A
$40$
B
$10$
C
$20$
D
$30$
(JEE MAIN-2023)
Solution
For non trivial solutions
$D =0$
$\left|\begin{array}{ccc}1 & 1 & \sqrt{3} \\-1 & \tan \theta & \sqrt{7} \\1 & 1 & \tan \theta\end{array}\right|=0$
$\tan ^2 \theta-(\sqrt{3}-1)-\sqrt{3}=0$
$\tan \theta=\sqrt{3},-1$
$\theta=\left\{\frac{\pi}{3}, \frac{-2 \pi}{3}, \frac{-\pi}{4}, \frac{3 \pi}{4}\right\}$
$\frac{120}{\pi}(\Sigma \theta)=\frac{120}{\pi} \times \frac{\pi}{6}=20$
Standard 12
Mathematics
Similar Questions
normal