$k \in R$ का वह मान, जिसके लिए रैखिक समीकरण निकाय
$3 x-y+4 z=3$
$x+2 y-3 z=-2$
$6 x+5 y+k z=-3$ के अनन्त हल है,
$3$
$-3$
$5$
$-5$
निम्न रेखीय समीकरण का विचार कीजिए :
$-x+y+2 z=0$
$3 x-a y+5 z=1$
$2 x-2 y-a z=7$
माना $a \in R$ के सभी मानों, जिनके लिए यह निकाय असंगत है, का समुच्चय $S_{1}$ है तथा $a \in R$ के सभी मानों, जिनके लिए इस निकाय के अनंत हल है, का समुच्चय $S _{2}$ है। यदि $S _{1}$ तथा $S _{2}$ में अवयवों की संख्या क्रमशः $n \left( S _{1}\right)$ तथा $n \left( S _{2}\right)$ है, तब
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
यदि समीकरण निकाय $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$के अनंत हल हैं तो $13 \alpha \beta$ बराबर है
यदि $B$ एक ऐसा $3 \times 3$ आव्यूह है कि $B ^{2}=0$ है, तो det. $\left[( I + B )^{50}-50 B \right]$ बराबर है
प्रत्येक में $k$ का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल $4$ वर्ग इकाई है जहाँ शीर्षबिंदु निम्नलिखित हैं:
$(\mathrm{k}, 0),(4,0),(0,2)$