- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
Let $O$ be the origin and $OP$ and $OQ$ be the tangents to the circle $x^2+y^2-6 x+4 y+8=0$ at the point $P$ and $Q$ on it. If the circumcircle of the triangle OPQ passes through the point $\left(\alpha, \frac{1}{2}\right)$, then a value of $\alpha$ is
A
$\frac{3}{2}$
B
$\frac{5}{2}$
C
$1$
D
$-\frac{1}{2}$
(JEE MAIN-2023)
Solution

Circumcircle of $\triangle OPQ$
$(x-0)(x-3)+(y-0)(y+2)=0$
$x^2+y^2-3 x+2 y=0$
$\text { passes through }\left(\alpha, \frac{1}{2}\right)$
$\therefore \alpha^2+\frac{1}{4}-3 \alpha+1=0$
$\Rightarrow \alpha^2-3 \alpha+\frac{5}{4}=0 \Rightarrow 4 \alpha^2-12 \alpha+5=0$
$\Rightarrow 4 \alpha^2-10 \alpha-2 \alpha+5=0$
$(2 \alpha-1)(2 \alpha-5)=0 \therefore \alpha=\frac{1}{2}, \frac{5}{2} \text { Ans. }$
Standard 11
Mathematics