10-1.Circle and System of Circles
hard

Let a circle $C$ touch the lines $L_{1}: 4 x-3 y+K_{1}$ $=0$ and $L _{2}: 4 x -3 y + K _{2}=0, K _{1}, K _{2} \in R$. If a line passing through the centre of the circle $C$ intersects $L _{1}$ at $(-1,2)$ and $L _{2}$ at $(3,-6)$, then the equation of the circle $C$ is

A

$(x-1)^{2}+(y-2)^{2}=4$

B

$(x+1)^{2}+(y-2)^{2}=4$

C

 $(x-1)^{2}+(y+2)^{2}=16$

D

$(x-1)^{2}+(y-2)^{2}=16$

(JEE MAIN-2022)

Solution

$L _{1}: 4 x -3 y + K _{1}=0$

$L _{2}: 4 x -3 y + K _{2}=0$

now

$-4-6+ K _{1}=0 \Rightarrow K _{1}=10$

$12+18+ K _{2}=0 \Rightarrow K _{2}=-30$

$\Rightarrow \quad$ Tangent to the circle are

$\quad 4 x -3 y +10=0$

$\quad 4 x -3 y -30=0$

Length of diameter $2 r=\frac{|10+30|}{5}=8$ $\Rightarrow r =4$

Now centre is mid point of $A$ \& $B$ $x =1, y =-2$

Equation of circle

$( x -1)^{2}+( y +2)^{2}=16$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.