Trigonometrical Equations
normal

Let $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ and $\beta=\sum_{x \in S} \tan ^2\left(\frac{x}{3}\right)$, then $\frac{1}{6}(\beta-14)^2$ is equal to

A

$32$

B

$8$

C

$64$

D

$16$

(JEE MAIN-2023)

Solution

Let $9^{\tan ^2 x}= P$

$\frac{9}{ P }+ P =10$

$P^2-10 P+9=0$

$(P-9)(P-1)=0$

$P=1,9$

$9^{\tan ^2 x}=1,9^{\tan ^2 x}=9$

$\tan ^2 x =0, \tan ^2 x =1$

$x =0, \pm \frac{\pi}{4} \quad \therefore x \in\left(-\frac{\pi}{2}, \frac{ p }{2}\right)$

$\beta=\tan ^2(0)+\tan ^2\left(+\frac{\pi}{12}\right)+\tan ^2\left(-\frac{\pi}{12}\right)$

$=0+2\left(\tan 15^{\circ}\right)^2$

$2(2-\sqrt{3})^2$

$2(7-4 \sqrt{3})$

Than $\frac{1}{6}(14-8 \sqrt{3}-14)^2=32$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.