The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :
$-\frac{11 \pi}{30}$
$\frac{\pi}{10}$
$-\frac{7 \pi}{30}$
$-\frac{\pi}{15}$
If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is
Let $A=\left\{\theta \in R \mid \cos ^2(\sin \theta)+\sin ^2(\cos \theta)=1\right\}$ and $B=\{\theta \in R \mid \cos (\sin \theta) \sin (\cos \theta)=0\}$. Then, $A \cap B$
The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$
If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$