જો બે ગણો $A$ અને $B$ હોય તો
$A \cup B \subseteq A \cap B$
$A \cap B \subseteq A \cup B$
$A \cap B = A \cup B$
એકપણ નહી.
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
જો $aN = \{ ax:x \in N\} ,$ તો ગણ $3N \cap 7N$ મેળવો.....$N$
છેદગણ શોધો : $A = \{ x:x$ એ $3$ ની ગુણિત પ્રાકૃતિક સંખ્યા છે. $\} ,$ $B = \{ x:x$ એ $6$ થી નાની પ્રાકૃતિક સંખ્યા છે. $\} $
આપેલ જોડના ગણ પરસ્પર અલગગણ છે? : $\{1,2,3,4\}$ અને $\{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે, $4\, \le \,x\, \le \,6\} $
જો બે ગણો $A$ અને $B$ હોય તો $(A -B) \cup (B -A) \cup (A \cap B) $