Let $A$ and $B$ be two sets. Then
$A \cup B \subseteq A \cap B$
$A \cap B \subseteq A \cup B$
$A \cap B = A \cup B$
None of these
If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y = - x,x \in R\} $, then
$A-(A-B)$ is
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup C$
Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$