Let $A$ and $B$ be two sets. Then

  • A

    $A  \cup B  \subseteq  A  \cap B$

  • B

    $A  \cap B  \subseteq  A  \cup B$

  • C

    $A  \cap B = A  \cup B$

  • D

    None of these

Similar Questions

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

$A-(A-B)$ is 

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$A \cup C$

Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$

For any sets $\mathrm{A}$ and $\mathrm{B}$, show that

$P(A \cap B)=P(A) \cap P(B).$