જો $A = \{ (x,\,y):y = {e^x},\,x \in R\} $,$B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ તો . .
$A \cap B = \phi $
$A \cap B \ne \phi $
$A \cup B = {R^2}$
એકપણ નહી.
જો બે ગણ $X$ અને $Y$ માટે $X \cup Y$ માં $18$ ઘટકો, $X$ માં $8$ ઘટકો અને $Y$ માં $15$ ઘટકો હોય, તો $X \cap Y$ માં કેટલા ઘટકો હશે ?
બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.
જો $\mathrm{R}$ એ વાસ્તવિક સંખ્યાઓનો ગણ અને $\mathrm{Q}$ સંમેય સંખ્યાઓનો ગણ હોય, તો $\mathrm{R-Q}$ થશે ?
સાબિત કરો કે નીચે આપેલી ચારેય શરતો સમકક્ષ છે :$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$