Let $A = \{a, b, c\}, B = \{b, c, d\}, C = \{a, b, d, e\},$ then $A \cap (B \cup C)$ is
$\{a, b, c\}$
$\{b, c, d\}$
$\{a, b, d, e\}$
$\{e\}$
Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X ,$ show that $A = B$
( Hints $A = A \cap (A \cup X),B = B \cap (B \cup X)$ and use Distributive law )
Let $A$ and $B$ be two sets such that $n(A) = 0.16,\,n(B) = 0.14,\,n(A \cup B) = 0.25$. Then $n(A \cap B)$ is equal to
If $A, B$ and $C$ are any three sets, then $A - (B \cap C)$ is equal to
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . . . .