જો બે ગણો $A$ અને $B$ હોય ,તો $A - B$ = . . . .
$A \cap {B^c}$
${A^c} \cap B$
$A \cap B$
એકપણ નહી.
(a) It is obvious.
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $B-D$
ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.
જો $A, B$ અને $C$ એવા ગણ છે કે જેથી $\phi \ne A \cap B \subseteq C$ તો નીચેનામાંથી ક્યુ વિધાન ખોટું છે
બે ગણું $X$ અને $Y$ એવા છે કે ગણ $X$ માં $40$ ઘટકો, $X \cup Y$ માં $60$ ઘટકો અને $X$ $\cap\, Y$ માં $10$ ઘટકો હોય, તો $Y$ માં કેટલા ઘટકો હશે?
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
Confusing about what to choose? Our team will schedule a demo shortly.