Let $A$ and $B$ be two sets in the universal set. Then $A - B$ equals

  • A

    $A \cap {B^c}$

  • B

    ${A^c} \cap B$

  • C

    $A \cap B$

  • D

    None of these

Similar Questions

Find the intersection of each pair of sets :

$X=\{1,3,5\} Y=\{1,2,3\}$

Given the sets $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is

If $A, B$ and $C$ are non-empty sets, then $(A -B)  \cup (B -A)$ equals 

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$C-B$