Let $R$ be a reflexive relation on a set $A$ and $I$ be the identity relation on $A$. Then

  • A

    $R \subset I$

  • B

    $I \subset R$

  • C

    $R = I$

  • D

    None of these

Similar Questions

Let $P$ be the relation defined on the set of all real numbers such that 

$P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. Then $P$ is

  • [JEE MAIN 2014]

Let $A =\{2,3,4\}$ and $B =\{8,9,12\}$. Then the number of elements in the relation $R=\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right) \in(A \times B, A \times B): a_1\right.$ divides $b_2$ and $a_2$ divides $\left.b_1\right\}$ is:

  • [JEE MAIN 2023]

Give an example of a relation. Which is Reflexive and symmetric but not transitive.

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $\mathrm{R}$ in the set $\mathrm{N}$ of natural numbers defined as

$\mathrm{R}=\{(x, y): y=x+5 $ and $ x<4\}$

Let $N$ be the set of natural numbers and a relation $R$ on $N$ be defined by $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} .$ Then the relation $R$ is:

  • [JEE MAIN 2021]