Let $A = \{1, 2, 3, 4\}$ and $R$ be a relation in $A$ given by $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$. Then $R$ is
Reflexive
Transitive
An equivalence relation
none of these
Let $N$ be the set of natural numbers greater than $100. $ Define the relation $R$ by : $R = \{(x,y) \in \,N × N :$ the numbers $x$ and $y$ have atleast two common divisors$\}.$ Then $R$ is-
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ and $y$ live in the same locality $\}$
If $A = \{1, 2, 3\}$ , $B = \{1, 4, 6, 9\}$ and $R$ is a relation from $A$ to $B$ defined by ‘$x$ is greater than $y$’. The range of $R$ is
Which of the following is not correct for relation $\mathrm{R}$ on the set of real numbers ?
Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is