જો $A = \{1, 2, 3, 4\}$ અને $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ એ ગણ $A$ પરનો સંબંધ છે તો $R$ એ . . ..
સ્વવાચક
સંમિત
પરંપરિત
એકપણ નહીં.
જો $R$ એ $n$ સભ્ય ધરાવતા ગણ $A$ પરનો સામ્ય સંબંધ હોય તો $R$ માં રહેલી કુલ ક્રમયુકત જોડની સંખ્યા . .. . . થાય.
જો $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ એ ગણ $A = \{ 3,\,6,\,9,\,12\} $ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.
જો $R$ અને $S$ એ ગણ $A$ પરના અરિકત સંબંધ છે તો આપેલ વિધાન પૈકી ... અસત્ય છે.
અહી $R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે. કે જે $R=\{(a, b): 3 a-3 b+\sqrt{7}$ એ અસંમેય સંખ્યા છે $\}$. તો $R$ એ . . . .
જો $R$ એ ગણ $A$ પરનો સ્વવાચક સંબંધ છે અને $I$ એ ગણ $A$ પરનો તદેવ સંબંધ હોય તો