Let $R$ be the relation on the set $R$ of all real numbers defined by $a \ R \ b$ if $|a - b| \le 1$. Then $R$ is

  • A

    Reflexive and Symmetric

  • B

    Symmetric only

  • C

    Transitive only

  • D

    Anti-symmetric only

Similar Questions

Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

The number of symmetric relations defined on the set $\{1,2,3,4\}$ which are not reflexive is

  • [JEE MAIN 2024]

Let $\mathrm{A}$ be the set of all students of a boys school. Show that the relation $\mathrm{R}$ in A given by $\mathrm{R} =\{(a, b): \mathrm{a} $ is sister of $\mathrm{b}\}$ is the empty relation and $\mathrm{R} ^{\prime}=\{(a, b)$ $:$ the difference between heights of $\mathrm{a}$ and $\mathrm{b}$ is less than $3\,\mathrm{meters}$ $\}$ is the universal relation. 

Show that the relation $R$ defined in the set $A$ of all polygons as $R=\left\{\left(P_{1}, P_{2}\right):\right.$ $P _{1}$ and $P _{2}$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in $A$ related to the right angle triangle $T$ with sides $3,\,4$ and $5 ?$

Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is