Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.
Let $A=\{1,2,3\}$
A relation $R$ on $A$ is defined as $R =\{(1,2),\,(2,1)\}$
It is clear that $(1,1),\,(2,2),\,(3,3) \notin R$
$\therefore R$ is not reflexive.
Now, as $(1,2)\in R$ and $(2,1)\in R$, then $R$ is symmetric.
Now, $(1,2) $ and $(2,1)\in R$
However, $(1,1)\notin R$
$\therefore R$ is not transitive.
Hence, $R$ is symmetric but neither reflexive nor transitive.
Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = {1, 2, 3}$, the minimum number of ordered pairs which when added to $R$ make it an equivalence relation is
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ is wife of $y\}$
Let $R$ be the relation in the set $N$ given by $R =\{(a,\, b)\,:\, a=b-2,\, b>6\} .$ Choose the correct answer.
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{A}=\{1,2,3,4,5,6\}$ as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{y}$ is divisible by $\mathrm{x}\}$