જો $n$ એ ચોકકસ ધન પૂર્ણાંક છે. જો સંબંધ $R$ એ ગણ $Z$ પર $aRb \Leftrightarrow n|a - b|$ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .
સ્વવાચક
સંમિત
પરંપરિત
ઉપર ના બધા
(d) It is obvious.
ગણ $\mathrm{A}=\{1,2,3,4,5,6\}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{y}$ એ $\mathrm{x}$ વડે વિભાજ્ય છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
જો $X$ એ ગણોનો સમુહ છે અને $R$ એ $X$ પરનો સંબંધ છે કે જે ‘$A$ અને $B$ અલગ ગણ છે.’ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . .
જો સંબંધ $R$ એ ગણ $N$ પર “$nRm \Leftrightarrow n$ એ $m$ નો અવયવ છે.(i.e., $n|m$)” દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . .
ગણ $A=\{1,2,3\}$ લો. $(1, 2)$ ને સમાવતા સામ્ય સંબંધોની સંખ્યા ……….. છે.
જો સંબંધ $R = \{(a, a)\}$ એ ગણ $A$ પરનો સંબંધ હોય તો $R$ એ .. . .
Confusing about what to choose? Our team will schedule a demo shortly.