Let L be the set of all lines in a plane and $\mathrm{R}$ be the relation in $\mathrm{L}$ defined as $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{L}_{2}\right): \mathrm{L}_{1}\right.$ is perpendicular to $\left. \mathrm{L} _{2}\right\}$. Show that $\mathrm{R}$ is symmetric but neither reflexive nor transitive.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$R$ is not reflexive, as a line $L_{1}$ can not be perpendicular to itself, i.e., $\left(L_{1}, \,L_{1}\right)$ $\notin R$. $R$ is symmetric as $\left(L_{1}, L_{2}\right) \in R$

$\Rightarrow $          $L_{1}$ is perpendicular to $L_{2}$

$\Rightarrow $          $L_{2}$ is perpendicular to $L_{1}$

$\Rightarrow  $          $\left(L_{2},\, L_{1}\right) \in R$

$R$ is not transitive. Indeed, if $L_{1}$ is perpendicular to $L_{2}$ and $L _{2}$ is perpendicular to $L _{3},$ then $L _{1}$ can never be perpendicular to $L _{3} .$ In fact, $L _{1}$ is parallel to $L _{3},$ ie., $\left( L _{1},\, L _{2}\right) \in R ,\left( L _{2}, L _{3}\right) \in R$ but $\left( L _{1}, L _{3}\right) \notin R$.

864-s3

Similar Questions

Let $A =\{1,2,3,4, \ldots .10\}$ and $B =\{0,1,2,3,4\}$ The number of elements in the relation $R =\{( a , b )$ $\left.\in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ is $.........$.

  • [JEE MAIN 2023]

Let $R_1$ be a relation defined by $R_1 =\{(a, b) | a \geq b, a, b \in R\}$ . Then $R_1$ is

Give an example of a relation. Which is Symmetric but neither reflexive nor transitive.

Let $A=\{1,2,3,4\}$ and $R$ be a relation on the set $A \times A$ defined by $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $R$ is:

  • [JEE MAIN 2023]

The probability that a relation $R$ from $\{ x , y \}$ to $\{ x , y \}$ is both symmetric and transitive, is equal to

  • [JEE MAIN 2022]