If $R = \{(6, 6), (9, 9), (6, 12), (12, 12), (12,6)\}$ is a relation on set $A = \{3, 6, 9, 12\}$ , then relation $R$ is
Only reflexive
Only symmetric
Symmetric and transitive but not reflexive
An equivalence relation
Let $A = \{ 2,\,4,\,6,\,8\} $. $A$ relation $R$ on $A$ is defined by $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $. Then $R$ is
Show that the relation $R$ in the set $A=\{1,2,3,4,5\}$ given by $R =\{(a, b):|a-b|$ is even $\},$ is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $ \{2,4\}$ are
Give an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then
Let $A=\{2,3,6,8,9,11\}$ and $B=\{1,4,5,10,15\}$
Let $\mathrm{R}$ be a relation on $\mathrm{A} \times \mathrm{B}$ define by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ if and only if $3 \mathrm{ad}-7 \mathrm{bc}$ is an even integer. Then the relation $\mathrm{R}$ is